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1. Introduction 
 
This Work Item aims to provide an overview of a number of real-world uses cases for the deployment of 
quantum-safe cryptography. Specifically, we present some examples of where cryptography is widely deployed 
today and investigate which things may need change to migrate to quantum-safe cryptography. 
 

2. General discussion 
 

Cryptography is already widely used and is rapidly becoming ubiquitous, appearing in everything from widely-
used internet and mobile applications to emerging technologies such as IoT. The wide range of applications is 
accompanied by a diversity of security, efficiency and policy requirements and a variety of different computing 
platforms ranging from highly constrained devices to high end computing; so it seems unlikely that there 
would be a single one-size fits all solution. We present some real-world use cases of where cryptography is 
deployed today and investigate how things may need change to migrate to quantum-safe cryptography. 
 
In the sections below we give an overview of different technology areas, identify where the security and 
cryptography currently resides, and indicate how things might have to evolve or change to support quantum-
safe cryptographic primitives. More detailed analysis of these examples may appear as separate work items. 
 

Disclaimer: This draft survey document should not be treated as an official ETSI endorsement of any products or 

standards mentioned below. Nor is it our intention to prescribe how protocols defined and maintained by any 

other standards bodies should evolve. Our intention here is simply to provide some typical example use-cases 

for discussion. 

3. Network security protocols (TLS) 
 

3.1. Overview 
 
Protocols such as IPsec, IKE, TLS, HTTP, SMTP and others are ubiquitous internet or application level protocols 
used to secure a host of modern communications applications including web browsing, e-mails, VPNs, VoIP, 
instant messaging, etc. Section 4 of the ETSI whitepaper [1] gives an overview of the sorts of changes that 
would need to be considered to incorporate quantum-safe primitives into common network protocols such as 
these. 
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Most of these protocols are defined and maintained by the IETF, W3C or similar groups and it is not in the 
remit of ETSI QSC ISG to decide how these protocols should evolve. However, given the ubiquitous nature of 
these protocols, we do need to have some understanding of the compatibility of any ETSI recommended 
primitives with the wider commercial infrastructure.  
 
The following sections focus on TLS as an important example of a real-world use case. We look at some specific 
proposals in the literature for ways to upgrade TLS to be quantum secure. The TLS [2], [3] protocol suite 
provides a cryptographic layer through which network application protocols such as HTTPS (used for web 
browsing), SMTP (e-mail) and VoIP (voice) can be securely tunnelled. TLS is widely used to underpin the 
security of many of the other technology areas discussed in the sections below. 

 

3.2. TLS Cryptography 
 

TLS version 1.2, defined in [2] and its intended upgrade, still in draft at [3], make wide use of public-key 
cryptography supported by PKI to provide key establishment and authentication services. These are currently 
based on the well-known factoring or discrete logarithm primitives RSA, DH, DSA, ECDH and ECDSA and it is 
precisely these primitives that we want to upgrade to be quantum-safe. Since TLS so widely used, it is here 
that we will ideally want to deploy our best and most modern primitives to provide secure and efficient 
quantum-safe replacements for the current PKC protocols. 
 
TLS also makes use of symmetric cryptography e.g. the block cipher AES for data encryption and the SHA hash 
algorithms for digital signatures and certificate verification. Since these primitives may be regarded as already 
quantum-safe, or easily upgraded to be quantum-safe by increasing key or block sizes, we will not discuss 
these further here but focus on the public-key primitives. 
 

3.3. Quantum resistance 
 

There have been three main approaches suggested so far for possible migration paths for upgrading TLS to 
incorporate quantum-safe primitives1.  
 

• The most straightforward proposal is to replace some or all of the current public-key primitives with 
like-for-like quantum-safe drop-in replacements, assuming that suitable alternatives with similar 
security levels and efficiency properties are available. The most promising example of this approach is 
the Ring-LWE proposal [4]. An early proof of concept demonstration [5] integrated a version of this 
scheme into OpenSSL and compare this against standard TLS using elliptic curve cryptography. The 
authors reported that that their preliminary constant run-time implementation looked practical, 
producing a typical reduction of 1.2x in throughput for serving HTTPS connections. More recent 
implementations [6], [7] report greatly increased throughputs of 8x-20x over [5] and halve the 
communications overhead, for the same 128-bit security level. These papers all include security, 
soundness and implementation analysis for the schemes presented. 

 

• A second proposal is to introduce hybrid schemes which derive an encryption key from some 
combination of the outputs from a classical key agreement scheme and a separate quantum-safe key 
agreement scheme. This might be a viewed as an interim step in the migration to using purely 
quantum-safe cryptography, or as a way of providing extra functionality or security. One such example 
for TLS is QSH [8] which proposes combining a standard classical TLS handshake with an NTRUEncrypt 
key transport. An initial implementation2 for TLS 1.2 reports a similar reduction in throughput of just 
1.2x for the 128-bit security level.  

 
1 We do not discuss here the large amount of work required to define new cipher suites or upgrade any other 
infrastructure required to support quantum safe primitives. 
2 Zhenfei will provide a more detailed report separately, and I’ll include a summary in the next version of this report. We 
simply note here that these figures are based on an implementation in WolfSSL using NTRUEncrypt parameter set 
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• A more radical approach would be to re-engineer the infrastructure of the internet and use a systems 
engineering approach to mitigate performance issues and allow larger key sizes to be handled. One 
such proposal for TLS is [9] which envisions using session resumption techniques to minimise the 
transmission and storage of large public keys between peers on a network, together with using 
symmetric keys supplied by trusted servers to secure individual sessions. Clearly it would be major 
undertaking to migrate for the entire Internet to a new architecture such as this but this approach 
might be more suitable for smaller networks.  

 
Some general comments: 
 
1) Both of the first two proposals [5], [8] are happy to use current (non quantum-safe) digital signatures such 

as RSA or ECDSA to provide forward security. This is example of the hybrid approach and can be viewed as 
a pragmatic way forward helping to ease the integration of quantum-safe cryptography into real-world 
systems. 

2) Quantum-safe primitives with very large public keys initially seem unsuitable for widespread deployment 
using this “drop in” approach as there are often restrictions on packet size, handshake size or other 
bandwidth issues. However there may be isolated networks that do not have these restrictions.   

3) Developers should not underestimate the amount of work required for the integration of quantum-safe 
cryptography into real-world systems. Even the apparently straightforward “drop in replacement” 
approach would require new cipher suites and other infrastructure to be defined.   

4) Hybrid key exchanges are not always allowed by network protocols (e.g. IKE) or they may not fit into the 
bandwidth currently allocated for handshakes [10].  

5) Many protocols including IPsec and TLS include options to support pre-shared keys, which eliminates the 
need for public key exchanges completely. However this is impractical for many real-world situations e.g. 
scalability. Other large systems can be configured to rely on pre-shared keys or work with key distribution 
centres include the ZigBee wireless mesh network for IoT applications [11], as well as the protocols 
HIMMO [12] and Kerberos. 

 

4. Internet of Things (DTLS) 
 

4.1. Overview 
 

Oscar will provide the draft text for this section. The paragraph below is a placeholder, extracted from [13]. 
 
DTLS is becoming the security standard to secure the IoT since it is required by many Machine to Machine 
standards such as OneM2M, OMA LWM2M, etc. However, with the advent of quantum computers most of the 
cipher suites of DTLS will become insecure. Furthermore, already today, it is very frequently discussed that 
DTLS and its cipher suites are too heavy for many IoT use cases. Thus, there is a need for a DTLS cipher suite 
that is post-quantum secure, efficient, scalable, and simple to use … 
 
The Internet of Things (IoT) refers to the increasing connectivity of so called "smart objects". This can be in an 
isolated ad-hoc manner or involve the connection to the Internet.  
 
For instance, if we consider a home Lighting use case, lighting devices such as light bulbs or light switches are 
outfitted with a CPU and some communication means forming a wireless network. The system further uses a 
gateway connected to the Wifi wireless router. The user, Alice, Upon installation of the gateway and 
downloading an app for her smart phone can easily pair the app and the gateway. Afterwards, Alice just has to 

 
eess439ep1 for 128 bits of classical security. In this case, typical timings give ECDHE-ECDSA-AES256-SHA384 with QSH 
taking 9.31 ms compared with 7.48 ms for the original classical TLS 1.2 ECDHE-ECDSA-AES256-SHA384 exchange. 
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plug the lighting devices that are automatically added to his home network. The user can then use the smart 
phone app to create lighting settings, control the lights, or create schedules. The user can also enable more 
advanced features like geo-fencing so that the lights go off or on when she leaves or gets home or enable the 
remote control of his smart lighting system over the Internet. 
 
We can also consider a Healthcare use case taking place in a hospital. Here, a new patient, Bob, is registered 
by nurse Alice. Alice retrieves Bob's electronic health record and takes a number of wireless sensors. Alice 
attaches the sensors, e.g., SpO2, breathing, or blood pressure to Bob’s body and associates them and a health 
monitoring device to his body sensor network. The health monitoring device will gather Bob's health 
information as collected from the sensors and securely forward the information to the Healthcare backend in 
charge of processing medical data and distributing the data to authorized Bob's doctors.  
 
When talking about IoT we can consider many different communication protocols to realize above exemplary 
use cases. Each of those protocols fulfills different purposes. If it is about getting the smart objects connected, 
we have to consider protocols like Bluetooth, IEEE 802.15.4, WiFi, 6LoWPAN, ZigBee, LTE, LoRA, Threat, NTCIP, 
NFC, MQTT, LWM2M, ONEM2M.. . Some of those protocols have a star topology around a gateway that is 
connected to the Internet or a given core network. Other protocols for a network, typically some form of 
mesh, required for scalability or lower communication latency. Some of these protocols define only the 
physical and MAC layers, other protocols focus on the network layer (e.g., 6LoWPAN), other protocols rather 
focus on the transport and application layers (e.g., LWM2M) and others combine multiple protocols protocols 
(e.g., ZigBee).  
 
From this description it is clear that there is not a clear winner or solution for IoT and it is not possible to 
provide an exhaustive description of all of them. Still, many of those protocols have some similarities. Many of 
them use some type of symmetric key approach for protecting the network or the communications between 
devices. One example is ZigBee in which a trust center handles a network key shared between the devices. 
Devices can also share a key with the trust center that can be used for network access or for distributing 
pairwise key between a pair of devices on demand. There are flavours of ZigBee in which a single key is pre-
distributed to all devices and that key then is used to securely distribute a network key when an ad-hoc 
network is formed. These methods have inherent weaknesses and should only be applied in scenarios with a 
suitable threat model. In the last years there has been a further move towards public-key cryptography and 
many of the protocols try to incorporate primitives such as ECDH or ECDSA when feasible as constrained by 
resource limitations (computational, communication or energy) or operational requirements.  
 

4.2. DTLS Also want: cryptography, quantum resitance cf. sec. 3.2, 3.3. 
 
When talking about the transport layer, we observe that multiple standards rely on DTLS, the datagram 
version of TLS. This is because it is used to protect the CoAP protocol that was thought to run over UDP. CoAP 
requires the usage of DTLS with certificates, raw public-keys, pre-shared keys, or no security. However, all 
existing ciphersuites using certificates and raw public-keys will be broken if a quantum computer is built. 
Furthermore, cipher-suites based on public-key cryptography are relatively bulky and this can negatively 
impact to either the underlying network (e.g., features by lossy communication links and low bandwidth) or 
the business case of the IoT application (for instance, if an smart object communicating over a cellular link only 
needs to report a few bytes a day of application data but the setup of the secure channel requires several KBs 
this will have severe consequences for the business case).  
 
Upgrading DTLS to make it quantum-safe can be done in several ways. One approach is to stop using existing 
public-key primitives and rely on PSK only. However, PSK only will not be a very scalable solution. Another 
approach is to introduce new cipher suites relying on QS PKC including both key agreement and digital 
signatures. Drawbacks here relate to the message sizes since communication has to go through relatively 
constrained and lossy wireless links or the energy consumption to send additional data. DTLS could also be 
architectured to work with a number of KDCs (only TTPs) so that when two devices are willing to communicate 
with each other, the KDC distributes a common key. The drawback of this approach refers to the additional 
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communication and energy consumption overhead due to the key establishment requests and the drawback 
of relying on an only KDC. Another approach would be the integration of an ID-based Key Pre-distribution 
Scheme, such as HIMMO, with the DTLS-PSK mode so that any pair of devices can agree on a common pairwise 
key on the fly while inherently verifying their identities or credentials. The usage of an infrastructure of TTPs 
would also solve issues related to system privacy or a single point of failure.  Challenge here is to have further 
open verification and improvements of ID-based KPSs. 
  
 

4.3. PSK, Kerberos and other non PKC methods 
 
If Alice and Bob share a symmetric-key, then they can securely exchange encrypted messages and authenticate 
each other. Once Alice and Bob share a common key, they can apply it in an authentication protocol, derive a 
session key, or use such a key to send a message. One of the key challenges when using symmetric-keys refers 
to the key distribution and management approach. The security of the system relies on the secrecy of the 
symmetric-keys so that these keys need to be distributed in a secure way. If we assume a network with N 
parties and we assume the pre-distribution of a different pairwise key for each of parties (we call such a 
system a naïve key pre-distribution scheme), a total of N(N-1)/2 keys would be required to ensure secure 
pairwise communication links and each party would have to store N-1 keys. This fact poses, on the one hand, 
challenges regarding storage requirements. On the other hand, if at a later stage additional parties become 
part of the network, it requires the challenging process of updating the keying materials assigned to each 
party. As already outlined, each party has to store the keys associated to other parties. If further information 
about those parties is stored, then the information of those parties can be easily verified. While this works 
very easily for a reduced number of individuals, it does not scale for a large networks due to the associated 
storage needs. 
 
Alternatively, a party can store and share just a single symmetric-key with a trusted server playing the role of 
either a Key Distribution Center or a Key Translation Center. Being a Key distribution center means that Alice 
will send a request to the KDC stating the need for a shared key with Bob and then the KDC will provide Alice 
and Bob with such a key. Being a Key translation center means that Alice will generate the key and Bob will be 
the one that “securely translates” with Bob’s shared secret so that Bob knows the key that Alice is using to 
communicate with him. There are many protocols following such an approach: 
 
 
-          Kerberos – is a protocol that has its origins in an MIT’s distributed authentication service. The 
basic Kerberos involves a client, a server, and trusted server. Client and Server do not share a secret, while the 
trusted server shares a secret with each of them. The main goal of the server is to verify the identity of the 
client. The whole protocol enables mutual authentication between client and server and the establishment of 
a common key between client and server. Kerberos was first standardized as RFC 1510 in 1993 followed by 
many additional RFCs enhancing or updating it. Today it is widely used for many services. 
 
-          ZigBee Trust Center – ZigBee defines a protocol for wireless sensor networks. The wireless sensor 
network is managed by a network coordinator and the security by a trust center that plays the role of key 
distribution center. When a first sensor wishes to communication with a second one, the first sensor sends a 
request to the trust center that then distributes a symmetric key to both of them. This symmetric key is used 
for mutual authentication and the derivation of a session key. 
 
  
Trusted centers are widely deployed. However, they have some drawbacks. The first one is that they have to 
be online representing a single point of failure. The second limitation is that they lead to lower performance in 
terms of communication overhead or latency. The final problem refers to the fact that they can monitor all the 
online communications. There have been a number of attempts to overcome these issues. One method is 
Blom’s scheme, in which in its basic version, a trusted party computes a kxk symmetric matrix D in a given 
finite field. Each party i has associated an identity vector D_i of length k  and obtains from the trusted party a 



 QSC(15)004004 

Page 6 / 8 

secret keying material U_i = (D_i G)^t. When two parties i and j wish to communicate with each other, they 
can exchange their identity vectors D_i and D_j and compute a common symmetric-key K_ij = D_j U_i = D_i U_i 
= K_ji. This can be done without the intervention of the trusted party overcoming many drawbacks of the 
above naïve key pre-distribution schemes and online systems based on an online trusted server. However, the 
problem with Blom’s scheme is that if an attacker compromises the secret U_i vectors of k or more parties, the 
attacker can re-compute the secret matrix D and break the whole system in a very simple way. After Blom’s 
scheme (1984), Matsumoto and Imai generalized the concept of key pre-distribution schemes in 1987 
introducing concepts for the verification of information or the usage of multiple trusted servers. In 1992, 
Blundo et al. proposed another scheme with similar properties to Blom’s scheme but based on polynomials. 
The search for efficient key pre-distribution schemes increased in the 00’s due to the advent of wireless sensor 
networks with plenty of key pre-distribution schemes such as randomized ones. In 2007 a scheme based on 
perturbation polynomials was presented aim at creating a collusion resistant and efficient scheme; however it 
was broken by a couple of years afterwards by Albrecht et al. The HIMMO scheme pursues the same goal, 
achieving a collusion resistant and efficient key pre-distribution scheme with properties that can also make it 
quantum-safe. 
 
 
 

5. Deploy once (Satellite communications) 
 

5.1. Satellite key management - background 
 

The SAFEcrypto case studies document [14] discusses requirements for future satellite key management 
systems. Current systems are typically owned and operated by a single organisation and have relatively basic 
functionality and requirements for key material. One aim of the SAFEcrypto project is to develop much larger 
and more flexible systems to support the ever growing market for satellite-based services and the increasingly 
complex requirements for multinational, multi-organisation missions and shared infrastructure.  
 
In high-level terms, the document envisions that a typical future satellite control network will comprise of an 
operational control centre that issues commands to the satellite and receives telemetry data back; one or 
more ground stations that actually sends the commands and collects the telemetry information and the 
payload data gathered and sent back by the satellite; end users (consumers of the satellite data); and possibly 
other auxiliary nodes such as data centres that apply some filtering and processing of the raw satellite data 
before it is sent on to the end users. The ground-based connections will usually be secured by the usual 
commercial solutions such as VPNs based on IPSec, TLS, etc. which were discussed in section 3 above, so for 
the remainder of this section we will focus just on the key management requirements arising due to 
communications with the satellites. 
 
The document identifies that cryptographic protection will be essential to protect the command and control 
instructions sent up to the satellite (uplink), and the telemetry channel and the payload data (downlink) sent 
back to the ground. There may also potentially be requirements for end-to-end security between satellites and 
end users, or even between satellites in a future "network of space-based entities." Additional requirements 
are noted for perfect forward security and protection of the satellites against key compromise on the ground. 
The authors conclude that 
 

In all cases, it can be assumed that the use of public key cryptography is restricted to authenticated 
key establishment. This may require public key encryption/decryption and signing/verification to be 
done on the satellites. 

 
Due to the longevity of satellites and associated infrastructure, and the difficulty of changing anything 
after the launch, any public key solution needs to be secure for a long period of time. It is thus an ideal 
case study for the use of post-quantum cryptographic solutions. 
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5.2. Satellite key management – constraints 
 

The basic requirement for this project is for a forward-secure authenticated key exchange meeting certain 
bandwidth constraints. 
 
The satellite uplink and telemetry channel are both low data rate, presently around 10-64Kbit/s and 100Kbit/s 
respectively. The downlink is high data rate, perhaps 2Gb/s, however this is mostly taken up with raw payload 
data. So bandwidth is a precious resource and this will place some limitations on the size available for the 
public key exchanges. Another implication is that the number of round-trip communications required for the 
authenticated key establishment should be minimised. 
 
The communications links are also characterised by very high latency (up to 240ms each way for geostationary 
satellites). This means that for key establishment the time to transmit data will dominate the execution time of 
the protocol i.e. very high speed is not a requirement for the cryptography. 
 
No special requirements are noted for protection against side channel attacks. These would probably be very 
difficult to mount in practice since both the satellites and the ground stations would be difficult to access, 
although timing attacks and to some extent fault based attacks remain as theoretical possibilities. 
 
The physical inaccessibility of the satellite means that any master keys provisioned at launch cannot be 
replaced. Therefore minimising the risk of exposure of these keys either directly or through cryptanalysis is 
deemed to be a critical factor in the selection of the cryptographic schemes. 
 

5.3. Summary 
 
Although this is a somewhat niche application this scenario nicely illustrates some of the requirements and 
solution for quantum safe cryptography. In particular the “deploy once” constraint means that long-life 
cryptography incorporating quantum resistance has been noted a requirement at the outset of the project. 
There are also some interesting bandwidth constraints. Both of these considerations are similar to some IoT 
use cases. 
 

6. Another example protocol or technology 
 

7. Conclusions 
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